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ABSTRACT 
This paper addresses the problem of picking up moving 
objects in pseudo-random motion.  Specifically, we present a 
recursive learning technique which utilizes two neural 
networks to model complex motion of such objects as well as 
the robot’s response time. Using the trained neural networks, a 
dynamic part pickup control strategy has been developed and 
implemented on a six degrees-of-freedom (DOF) industrial 
robot. The performance of this hand-eye coordination control 
strategy has been evaluated experimentally in real time for 
picking up moving objects on vibratory feeder. 
 
1.  INTRODUCTION 
There are many industrial tasks in which visual servoing is 
required to provide sophisticated guidance information for 
either the tracking or grasping of objects in motion.  In the 
case of grasping, there will come a point at which the view of 
the object being tracked will become obscured by the 
actuating mechanism itself, whether the vision system is 
mounted on or off the actuation mechanism.  Thus, it becomes 
necessary to predict the future state of an object that is desired 
to be grasped.  
 
Some types of motion such as moving parts on a vibratory 
feeder where motion is pseudo-random, the problem of 
predicting the future state of an object based on its initial state 
is rather challenging. Vibratory feeders are commonly used to 
separate industrial parts prior to robot handling. Lee and Qian 
[1] formulated the problem in the context of Prey Capture 
with the robot as a “pursuer” and a moving object as a passive 
“prey.” They demonstrated the use of neural network to 
estimate a moving part’s position.  The concept of prey 
capture has only been explored in robotics in recent years.  
Sharma and Aloimonos [2] investigated the problem of a 
mobile robot tracking a moving object.  They modeled the 
motion control as a differential game [3] of pursuit and 
evasion, and used a camera on a mobile robot to obtain the 
information about a moving target from a sequence of its 
images.  However, their emphasis was on the use of 
qualitative information for motion control.  Detailed control 
strategy and implementation problems were not discussed.  
The problem of docking mobile robots using a bat-like sonar 
system was considered by Kuc and Barshan [4] in the context 
of prey capture in two dimensions.  By constraining the prey 

motion to be linear, the lower bound for the capture time was 
determined from game theory.  However, complete 
information about the prey was assumed. 
 
We present here a recursive learning algorithm to guide an 
industrial robot to pick up moving objects from the surface of 
a vibratory feeder.  The contributions of the paper are briefly 
summarized as follows: (1) The algorithm requires only an 
initial location and orientation of the moving object to predict 
the state of the object at the point of pickup.  This overcomes 
a common vision problem; that is, the view of the object at the 
point of pickup often becomes obscured by the gripper itself.  
(2) For a given initial state of the object, only the robot 
response time is needed to command the robot to execute the 
pickup task, which can be determined off-line by training for a 
specified velocity.  Thus, the technique introduced in this 
article can be readily implemented on an off-the-shelf 
industrial robot without special modification of its controller 
which is treated as a “black box”.  (3) The concept feasibility 
of the dynamic part pickup system has been experimentally 
demonstrated and evaluated on an industrial robot and a 
vibratory feeder in real time.  The results provide significant 
insights to the other similar applications such as catching and 
hanging live birds on shackle line for poultry processing. 
 
The remainder of this article is organized as follows:  An 
overview of the dynamic part pickup controlled system is 
presented in Section 2, followed by a description of the 
recursive learning algorithm in Section 3. The experimental 
results and discussions are detailed in Section 4.  Finally, 
conclusions are summarized in Section 5. 
 
2. SYSTEM SETUP AND OVERVIEW 
Figure 1 shows a schematic of a dynamic part pickup system 
which consists of a vibratory feeder, an industrial robot, and a 
vision system mounted on the robot’s end-effector. Parts to be 
picked up circulate continuously on the vibratory surface of a 
Dyna-Slide vibratory feeder which generates pseudo-random 
type motion to singulate the moving objects.  The robot used 
in this investigation is a Cincinnati Milacron T3-786 industrial 
robot.  This is a six DOF electrically driven, computer-
controlled, articulated robot.  Each of the six axes is servo 
controlled by the Cincinnati ACRAMATIC Version 4.0 
Control.  A user-programmable flexible integrated vision 
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system (FIVS) developed at Georgia Tech [5] is used to 
determine the initial object’s pose.  Customized machine 
vision algorithms can be written, compiled, and downloaded 
into the FIVS’ EEPROM for real-time execution. The camera 
and the kinematic relationship between the imaging sensor 
and the gripper were calibrated using Tsai and Lens 
calibration algorithms [6] [7] respectively.  The system is 
controlled by a dynamic part pickup controller (DPPC) 
implemented on an Intel 486-33MHz computer which 
communicates with the FIVS and the robot controller through 
serial communication. 

Vibratory
Part Feeder

FIVS
Vision System

Suction Gripper

T3-786
Industrial Robot

 
Fig. 1 Schematic of a typical robotic pick-up system 

 
A typical cycle of the part pick-up operation is as follows: 
The FIVS is positioned at a pre-specified location above the 
vibratory feeder such that the optical axis of the camera is 
perpendicular to the vibratory surface.  Once the FIVS 
detects an object in its field-of-view (FOV), it will compute 
the initial pose of the object, namely the location and 
orientation, and feedback this visual information to the 
DPPC.  The DPPC, in turn, determines a rendezvous point in 
time and space, and computes the pose of the end-effector for 
the pickup operation to occur. 
 
Figure 2 shows the relationship between a moving object and 
the suction gripper.  Consider that the moving object is 
detected at time ti and the robot is commanded to pick the 
object up at time ti+1 =ti+∆t where ∆t is the time interval 
between sensing and pickup. In order to pickup the moving 
object, the robot controller must compute the joint rotations 
to move its end-effector from its initial viewing position to 
the grasping position. Clearly, there is a finite time interval 
required to complete the pick up task in response to the 
command from the DPPC.  This time interval, denoted here 
as the robot’s response time tr, is a function of joint 
velocities. 
 
To ensure a successful pick up, the following control 
objective must be matched: 

p ri 1 i 1+ +− ≤ δ                               (1) 

where  pi+1= f1 (pi, ∆t);                                (2)  
 

ri+1= f2(ri, tr);                                  (3) 

and where δ is the specified tolerance vector of the suction 
gripper for the pick up operation; ri and ri+1 are the initial and 
the subsequent poses of the robot’s end-effector; and pi and 
pi+1 are the position and orientation of the object with respect 
to the world coordinate system at time ti and ti+1 respectively. 
All the objects are considered as rigid bodies in three 
dimensional space, represented by a dual vector notation 
(translation and orientation vectors).  The part pick-up system 
is subjected to the following constraint: 

∆t t tr v≥ +    (4) 
where tv is the time required for the vision system to process 
the image, determine the location and orientation of the 
moving object at time ti+1, and execute the pick up task.  If 
Equation (4) is not satisfied, the robot will be unable to catch 
up with the moving object. 
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Fig. 2 Relationship between moving object and gripper 

 
3.  PART PICKUP SYSTEM MODELING 
The dynamic part pickup system is modeled by means of a 
recursive learning algorithm as shown in Fig. 3.  
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Fig. 3 Recursive part pickup learning algorithm 
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This algorithm consists of two networks; namely, the target 
trajectory neural network (TTNN) and the robot response 
neural network (RRNN). The two networks are trained off-
line separately using experimentally collected input-output 
data pairs (or the training data).  The parameters of each of 
the networks are adapted using the back-propagation network 
training algorithm outlined in the Appendix.  
 
Robot Response Modeling 
As the time interval ∆t in Equation (2) is a function of the 
current state of the target itself, it is therefore not known in 
advance. In order to estimate the robot response time tr, the 
following inverse mapping relationship  for a given  robot 
velocity is defined in Equation (5). 

t fr r= −
2

1 ( ; , )y W , Vr r θ                       (5) 

where Wr, Vr, and θr  are the weight matrices and vector of 
RRNN to be determined using the back-propagation learning 
algorithm (see Appendix) and y = ri+1.  Since initial viewing 
position is fixed, only the final pose is required as an input to 
the RRNN.  To obtain the training data experimentally, the 
robot is taught to execute successive pick up movements over 
a fine grid on the plane of the vibratory feeder and the time 
taken to execute each of the pickup tasks at a specified robot 
velocity is stored.  The training data are then used to 
determine the mapping relationship for Equation (5).  
 
Trajectory Learning 
The mapping relationship for Equations (6) is determined by 
means of the TTNN as shown in Fig. 3, where the first n 
elements of the vector x represent the components of the 
object pose vector pi and the element xn+1 refers to the time 
interval ∆t. The output vector y from the TTNN corresponds 
to the pose vector pi+1.  

y  f x1=  ( t; , )W , Vt t θ                                (6) 

where Wt, Vt and θ t , are the weight matrices and vector of 
TTNN.  To obtain the training data for adapting the TTNN 
networks’ parameters, a sample part of interest is allowed to 
circulate on the vibratory feeder. Trajectories of the part over 
a representative region on which the part is to be picked up 
are obtained using the FIVS.  The input and output training 
data pairs,  Atk{xk1, xk2, …, xk(n+1)} and Btk{yk1, yk2, …, ykn} 
respectively, are then used to determine the network 
parameters, Wt, Vt, and θ t . 
 
Part Pickup Learning Algorithm 
Using the trained RRNN and TTNN, the recursive learning 
begins with an initial guessed ∆ti=0 with the detected target’s 
pi. The predicted end-effector’s pose pi+1 from the TTNN is 
then fed into the RRNN which, in turn, computes the 
approximate time required for the robot to execute the pickup 
task.  If Equation (4) is not satisfied, a new pose will be re-

computed using the original detected target’s pose and the 
new time interval or 

x t tn
new

r v+ = +1 .   (7) 
The network is performed recursively until the following 
condition is matched: 

t t xr v n
current+ ≤ +1    (8) 

Equation (8) represents the condition upon which the robot is 
commanded by the DPPC to pickup the moving object. 
 
4. EXPERIMENTAL INVESTIGATION 
Two different types of industrial parts; a circular disk with a 
diameter of 34mm and a 3/8-inch machine screw of 2 inches 
long, were used to exemplify the dynamic part pick up.  The 
significant difference between the two shapes are in the 
number of states required to approximate each for the pickup.  
For the circular disk, two state variables, the (x, y) Cartesian 
coordinates, are required for grasping.  In the case of an 
elongated shape, the orientation angle φ in addition to its (x, 
y) Cartesian coordinates must be approximated. 
 
4.1 Network Training Considerations 
For the purpose of performing the required mappings, a 
single hidden-layer feedforward sigmoidal architecture was 
designed (Hornik and White, 1989).  Attempts were made to 
use the minimal number of processing elements  (neurons) 
necessary to represent the respective systems. Table 1 
summarizes the number of neurons used, the input and output 
state variables in each network training. 
 
Table 1 Summary of training configurations  

 Neurons Input Output Data 
RRNN 5 x, y tr 387 
Circular disk 30 x, y ∆t x, y 500 
Machine screw 65 x, y, φ, ∆t x, y, φ 500 

 
Noisy or undesirable data sets, termed outliers, can not only 
slow the convergence of a network, but can also result in the 
network most closely approximating this noisy data as 
opposed to that which is desired [8].  For these reasons,  
target trajectory data which contrasted highly with that of the 
norm was filtered out prior to training.  
 
Network parameters are originally set at random values. The 
learning rate η was allowed to adapt during the training 
procedure based on the change of sum squared error over one 
complete run through the data sets (one epoch).  That is, 

η
η ε
η εk

k

k

if E
if E+ =

+ ≤
− >





1
0
0

∆
∆

                (10) 

where ε is a small positive increment and ∆E is the difference 
between the current and previous cost function E defined in 
Equation (A.1). 
As oulined in the Appendix, the back-propagation training 
algorithm performs the weight adjustments by moving along 
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the cost function in the opposite direction of the gradient to a 
“local” minimum in the network’s parameter space.  In an 
attempt to locate the global error minimum, the adjustment of 
the network’s parameters was performed iteratively using 
numerous random sets of initial conditions.  
 
4.2 Experimental Results Of Network Training 
Three separate network training were performed; namely, 
robot response time modeling, trajectory of a circular disk-
like object; and trajectory of a machine screw. 
 
Robot Response 
Figures 4(a) and 4(b) show the actual and RRNN trained 
response time data of the robot to reach a fine grid of 
positional points on the vibratory surface form its viewing 
position (700mm above the surface).  The robot response 
time corresponds to the time increment between the 
command issued to the robot controller and the 
acknowledgment received from the robot controller.  The 
maximum percent error in the robot response time model 
across the entire trained region is 11.1%.  
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(a) Robot Response Time to pick up object at (x,y) 
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(b)  RRNN approximation of Robot Response Time  

 
Fig. 4 Experimental and Simulated Robot Response Time 

 
As shown in Fig. 4, the robot response time is a linear 
function of x and y: 

x v t xx= + 0    (11a) 
y v t yy= + 0    (11b) 

where vx = 1.555 m/s; vy = 0.325 m/s; x0 = -1.435 m; and y0 = 
-0.429 m. The nominal robot velocity was 0.635m/s. 
It was observed that the wrist typically reaches its desired 
orientation by the time the robot moves the wrist into the 
desired position. Thus, the same network parameters were 

used for the picking up the two different objects since the 
limiting factor contributing to the robot’s response time has 
been the Cartesian translation undergone by the robot. 
 
Trajectory of Circular Disk 
The TTNN approximated trajectories are shown in Figure 5.  
Each vector in this plot represents a 0.2 second trajectory 
followed by the target.  It is interesting to note that the neural 
network actually learned to model somewhat of a stationary 
point where these disk-like parts were observed to frequently 
slow down, and sometimes get temporarily ‘stuck’ on the 
feeder.  
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Fig. 5 TTNN approximated trajectories (Circular disk) 

 
Figure 6 compares the TTNN approximated trajectories 
against the real data not included in the training set over a 
broad range of initial starting conditions.  As shown in the 
Figure 6, the network model fairly accurately predicts these 
complex paths for short time intervals. 
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Fig. 6 Comparison between predicted and actual trajectories 

 
Table 2 shows the TTNN’s success rate of predicting the 
final state of 100 moving parts after various time intervals. A 
successful estimation was taken to be one in which the final 
position difference in modeled and actual trajectories was 
less than ±8 mm in both x and y directions. As shown in 
Table 2, it is desirable in implementation to minimize ∆t, the 
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time interval between sensing and pickup since the error 
propagates as the time interval increases. 
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Table 2 Success rate of TTNN’s on trajectory prediction 
Time Interval (s) Success Rate 

0.3 90.2 % 
0.6 86.1 % 
0.9 79.8 % 
1.2 75.4 % 
1.5 68.1 % 

 
Trajectory of Machine Screw   
Figure 7 show approximated trajectories of the moving screw 
for three initial orientation angles; 90°, 0°, 45°and -45°.  In 
each plot, the increments are of constant time intervals of 0.3 
seconds each showing the evolution of three state variables 
over time.  It is interesting to note the inter-relation between 
initial orientation angle and final trajectory of the part.  There 
is also a noticable tendency for the screw’s orientation to 
move towards 0 deg as time evolves, due to the screw’s head 
dragging behind the rest of the screw. 
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Fig. 7 TTNN approximated trajectories (Machine screw) 

 
4.3 Experimental Results Of Dynamic Part Pickup  
In an attempt to improve the success rate for picking up the 
circular disks, the target position over elapsed time and the 
robot response time to reach each position are graphed in 
Figure 8 and the time distribution among the activities in 
each control loop cycle is summarized in Table 3.  As shown 
in Figure 8, a representative target of interest to be picked up 
is located at initial location (-60, -40) in mm. The rendezvous 
point for the target is calculated to occur at the location (-
18.7, -30.3) after 1.23 seconds. Convergence was typically 
achieved after 6 iterations through the DPPC. 
 
Table 4 summarizes the success rate of the dynamic part 
pickup strategy in real-time using three different viewing 
configurations.  The first and second configurations differ in 
initial viewing heights; namely, at the vertical distance of 
700mm and 500mm respectively.  A third control strategy 
was implemented in which two network approximations are 
made in succession.  The viewing height begins at 700mm, 
moves to 500mm while estimating part trajectory, and finally 
grasps from 500mm.  The results summarized in Table 3 are 

based on 100 pickup attempts, indicating viewing 
configuration used, the corresponding FOV, average time 
interval for pick up, and success rate associated with each 
method. As shown in Figure 8 and Table 3, since a dominant 
time-delay of 1.2 seconds is needed for the robot to execute a 
single part, the time interval between sensing and pickup, ∆t, 
becomes relatively insensitive to change in viewing height. 

 
Table 3 Control loop cycle-time distribution 

Process Time (ms) Time (s) 
Integration 60 tv=0.227 
Image Processing 38  
Serial Communication 74  
486 Processing 55  
Robot Response 1200 tr=1.2 
Total Average Cycle Time 1427 ∆t=1.427 
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Fig. 8 Part trajectory and Robot Response Time 

 
Table 4 Success rate for three different viewing methods 

Viewing method FOV(mm) Average δt Success 
700mm (135x135) 1.43s 61% 
500mm (96x96) 1.36s 68% 

Successive 1352 ⇒ 962 2.72s 66% 
 
As an additional measure of performance, the average cycle 
time to pick up a single part was compared with one using  a 
part-specific fixture.  In the case of part specific setup, the 
system must only verify the part’s presence visually, and then 
pick it up at a known position (chosen to be 500mm away).  
This average cycle  time was approximately 4.52s.  The 
DPPC’s pickup strategy had an cycle time of 4.88s based on 
a viewing method of 500mm, about 7.4% longer per cycle 
than the approach with a part-specific fixture. 
 
6.  CONCLUSIONS 
A technique to pickup objects moving in pseudo-random 
motion on vibratory feeder has been presented.   Specifically, 
a dynamic part pickup controlled system has been developed 
and implemented on an industrial robot. The system uses a 
position-based vision system to determine the initial state of 

o-part 
x-robot 
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the object and a recursive learning algorithm to predict the 
pickup state. The latter utilizes two neural networks to model 
the trajectories associated with individual parts on the feeder 
and the robot response time at a specific velocity. The 
performance of this hand/eye coordination control strategy 
has been evaluated experimentally on picking up objects 
moving on an industrial vibratory feeder in real-time. As 
demonstrated experimentally, the vision-guided dynamic 
part-pickup system can provide an effective means to predict 
the future state of the moving object when the view of this 
object becomes temporarily blocked or obscured by the 
actuating mechanism itself.   
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APPENDIX 
Let the cost function of a typical neural network (as shown in 
Figure A.1) be 

E b zkj j
j

n
= −

=
∑1

2
2

1
( )   (A.1) 

where bkj, is the jth element of the kth output data set Bk{bk1, 
bk2, …, bkn} corresponding to the input data set Ak{ak1, ak2, …, 
ak(n+1)} in training data pairs; and zj is the  jth output given by 

z wj ij i
i

n
=

=
∑ σ

1

                            (A.2) 
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Figure A.1. Target Trajectory Neural Network 

 
The hidden processing elements where σk{σk1, σk2, …, σkp} is 
computed from Equation (A.3): 

σ θi kh
h

n

h i if a v= +
=
∑( )

1
  (A.3) 

where the hidden-layer processing element function is 

f
e

( )γ γ=
+ −

1
1

 .  (A.4) 

The cost function is minimized in the opposite direction of 
the gradient: 
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where ηi (i=1,2,3) are positive-valued constants (learning rate) 
that regulate the amount of adjustments made with each 
gradient move, 
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where e b zk kj j= − . 


