
Presented at the IEEE/ASME AIM’97, Tokyo, Japan
June 16-20, 1997

VISION-GUIDED DYNAMIC PART PICKUP LEARNING ALGORITHM

Kok-Meng Lee and James Downs
The George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0405

ABSTRACT
This paper addresses the problem of picking up moving
objects in pseudo-random motion. Specifically, we present a
recursive learning technique which utilizes two neural
networks to model complex motion of such objects as well as
the robot’s response time. Using the trained neural networks, a
dynamic part pickup control strategy has been developed and
implemented on a six degrees-of-freedom (DOF) industrial
robot. The performance of this hand-eye coordination control
strategy has been evaluated experimentally in real time for
picking up moving objects on vibratory feeder.

1. INTRODUCTION
There are many industrial tasks in which visual servoing is
required to provide sophisticated guidance information for
either the tracking or grasping of objects in motion. In the
case of grasping, there will come a point at which the view of
the object being tracked will become obscured by the
actuating mechanism itself, whether the vision system is
mounted on or off the actuation mechanism. Thus, it becomes
necessary to predict the future state of an object that is desired
to be grasped.

Some types of motion such as moving parts on a vibratory
feeder where motion is pseudo-random, the problem of
predicting the future state of an object based on its initial state
is rather challenging. Vibratory feeders are commonly used to
separate industrial parts prior to robot handling. Lee and Qian
[1] formulated the problem in the context of Prey Capture
with the robot as a “pursuer” and a moving object as a passive
“prey.” They demonstrated the use of neural network to
estimate a moving part’s position. The concept of prey
capture has only been explored in robotics in recent years.
Sharma and Aloimonos [2] investigated the problem of a
mobile robot tracking a moving object. They modeled the
motion control as a differential game [3] of pursuit and
evasion, and used a camera on a mobile robot to obtain the
information about a moving target from a sequence of its
images. However, their emphasis was on the use of
qualitative information for motion control. Detailed control
strategy and implementation problems were not discussed.
The problem of docking mobile robots using a bat-like sonar
system was considered by Kuc and Barshan [4] in the context
of prey capture in two dimensions. By constraining the prey

motion to be linear, the lower bound for the capture time was
determined from game theory. However, complete
information about the prey was assumed.

We present here a recursive learning algorithm to guide an
industrial robot to pick up moving objects from the surface of
a vibratory feeder. The contributions of the paper are briefly
summarized as follows: (1) The algorithm requires only an
initial location and orientation of the moving object to predict
the state of the object at the point of pickup. This overcomes
a common vision problem; that is, the view of the object at the
point of pickup often becomes obscured by the gripper itself.
(2) For a given initial state of the object, only the robot
response time is needed to command the robot to execute the
pickup task, which can be determined off-line by training for a
specified velocity. Thus, the technique introduced in this
article can be readily implemented on an off-the-shelf
industrial robot without special modification of its controller
which is treated as a “black box”. (3) The concept feasibility
of the dynamic part pickup system has been experimentally
demonstrated and evaluated on an industrial robot and a
vibratory feeder in real time. The results provide significant
insights to the other similar applications such as catching and
hanging live birds on shackle line for poultry processing.

The remainder of this article is organized as follows: An
overview of the dynamic part pickup controlled system is
presented in Section 2, followed by a description of the
recursive learning algorithm in Section 3. The experimental
results and discussions are detailed in Section 4. Finally,
conclusions are summarized in Section 5.

2. SYSTEM SETUP AND OVERVIEW
Figure 1 shows a schematic of a dynamic part pickup system
which consists of a vibratory feeder, an industrial robot, and a
vision system mounted on the robot’s end-effector. Parts to be
picked up circulate continuously on the vibratory surface of a
Dyna-Slide vibratory feeder which generates pseudo-random
type motion to singulate the moving objects. The robot used
in this investigation is a Cincinnati Milacron T3-786 industrial
robot. This is a six DOF electrically driven, computer-
controlled, articulated robot. Each of the six axes is servo
controlled by the Cincinnati ACRAMATIC Version 4.0
Control. A user-programmable flexible integrated vision

 2

system (FIVS) developed at Georgia Tech [5] is used to
determine the initial object’s pose. Customized machine
vision algorithms can be written, compiled, and downloaded
into the FIVS’ EEPROM for real-time execution. The camera
and the kinematic relationship between the imaging sensor
and the gripper were calibrated using Tsai and Lens
calibration algorithms [6] [7] respectively. The system is
controlled by a dynamic part pickup controller (DPPC)
implemented on an Intel 486-33MHz computer which
communicates with the FIVS and the robot controller through
serial communication.

Vibratory
Part Feeder

FIVS
Vision System

Suction Gripper

T3-786
Industrial Robot

Fig. 1 Schematic of a typical robotic pick-up system

A typical cycle of the part pick-up operation is as follows:
The FIVS is positioned at a pre-specified location above the
vibratory feeder such that the optical axis of the camera is
perpendicular to the vibratory surface. Once the FIVS
detects an object in its field-of-view (FOV), it will compute
the initial pose of the object, namely the location and
orientation, and feedback this visual information to the
DPPC. The DPPC, in turn, determines a rendezvous point in
time and space, and computes the pose of the end-effector for
the pickup operation to occur.

Figure 2 shows the relationship between a moving object and
the suction gripper. Consider that the moving object is
detected at time ti and the robot is commanded to pick the
object up at time ti+1 =ti+∆t where ∆t is the time interval
between sensing and pickup. In order to pickup the moving
object, the robot controller must compute the joint rotations
to move its end-effector from its initial viewing position to
the grasping position. Clearly, there is a finite time interval
required to complete the pick up task in response to the
command from the DPPC. This time interval, denoted here
as the robot’s response time tr, is a function of joint
velocities.

To ensure a successful pick up, the following control
objective must be matched:

p ri 1 i 1+ +− ≤ δ (1)

where pi+1= f1 (pi, ∆t); (2)

ri+1= f2(ri, tr); (3)

and where δ is the specified tolerance vector of the suction
gripper for the pick up operation; ri and ri+1 are the initial and
the subsequent poses of the robot’s end-effector; and pi and
pi+1 are the position and orientation of the object with respect
to the world coordinate system at time ti and ti+1 respectively.
All the objects are considered as rigid bodies in three
dimensional space, represented by a dual vector notation
(translation and orientation vectors). The part pick-up system
is subjected to the following constraint:

∆t t tr v≥ + (4)
where tv is the time required for the vision system to process
the image, determine the location and orientation of the
moving object at time ti+1, and execute the pick up task. If
Equation (4) is not satisfied, the robot will be unable to catch
up with the moving object.

X

YZ ∆ti

tr
ri

ri+1
Pi+1

Pi

x
y

z

Fig. 2 Relationship between moving object and gripper

3. PART PICKUP SYSTEM MODELING
The dynamic part pickup system is modeled by means of a
recursive learning algorithm as shown in Fig. 3.

σ1

σ2

σ3

σm

x1

x2

at
Vt Wt

Σxn+1

y1

yn

ΣTTNN

σ1

σ2

σ3

σp

ar
VrWr

Σ
tr

RRNN

tr +tv xn+1?

No

Stop
Yes

Σtv

≤

Fig. 3 Recursive part pickup learning algorithm

 3

This algorithm consists of two networks; namely, the target
trajectory neural network (TTNN) and the robot response
neural network (RRNN). The two networks are trained off-
line separately using experimentally collected input-output
data pairs (or the training data). The parameters of each of
the networks are adapted using the back-propagation network
training algorithm outlined in the Appendix.

Robot Response Modeling
As the time interval ∆t in Equation (2) is a function of the
current state of the target itself, it is therefore not known in
advance. In order to estimate the robot response time tr, the
following inverse mapping relationship for a given robot
velocity is defined in Equation (5).

t fr r= −
2

1 (; ,)y W , Vr r θ (5)

where Wr, Vr, and θr are the weight matrices and vector of
RRNN to be determined using the back-propagation learning
algorithm (see Appendix) and y = ri+1. Since initial viewing
position is fixed, only the final pose is required as an input to
the RRNN. To obtain the training data experimentally, the
robot is taught to execute successive pick up movements over
a fine grid on the plane of the vibratory feeder and the time
taken to execute each of the pickup tasks at a specified robot
velocity is stored. The training data are then used to
determine the mapping relationship for Equation (5).

Trajectory Learning
The mapping relationship for Equations (6) is determined by
means of the TTNN as shown in Fig. 3, where the first n
elements of the vector x represent the components of the
object pose vector pi and the element xn+1 refers to the time
interval ∆t. The output vector y from the TTNN corresponds
to the pose vector pi+1.

y f x1= (t; ,)W , Vt t θ (6)

where Wt, Vt and θ t , are the weight matrices and vector of
TTNN. To obtain the training data for adapting the TTNN
networks’ parameters, a sample part of interest is allowed to
circulate on the vibratory feeder. Trajectories of the part over
a representative region on which the part is to be picked up
are obtained using the FIVS. The input and output training
data pairs, Atk{xk1, xk2, …, xk(n+1)} and Btk{yk1, yk2, …, ykn}
respectively, are then used to determine the network
parameters, Wt, Vt, and θ t .

Part Pickup Learning Algorithm
Using the trained RRNN and TTNN, the recursive learning
begins with an initial guessed ∆ti=0 with the detected target’s
pi. The predicted end-effector’s pose pi+1 from the TTNN is
then fed into the RRNN which, in turn, computes the
approximate time required for the robot to execute the pickup
task. If Equation (4) is not satisfied, a new pose will be re-

computed using the original detected target’s pose and the
new time interval or

x t tn
new

r v+ = +1 . (7)
The network is performed recursively until the following
condition is matched:

t t xr v n
current+ ≤ +1 (8)

Equation (8) represents the condition upon which the robot is
commanded by the DPPC to pickup the moving object.

4. EXPERIMENTAL INVESTIGATION
Two different types of industrial parts; a circular disk with a
diameter of 34mm and a 3/8-inch machine screw of 2 inches
long, were used to exemplify the dynamic part pick up. The
significant difference between the two shapes are in the
number of states required to approximate each for the pickup.
For the circular disk, two state variables, the (x, y) Cartesian
coordinates, are required for grasping. In the case of an
elongated shape, the orientation angle φ in addition to its (x,
y) Cartesian coordinates must be approximated.

4.1 Network Training Considerations
For the purpose of performing the required mappings, a
single hidden-layer feedforward sigmoidal architecture was
designed (Hornik and White, 1989). Attempts were made to
use the minimal number of processing elements (neurons)
necessary to represent the respective systems. Table 1
summarizes the number of neurons used, the input and output
state variables in each network training.

Table 1 Summary of training configurations

 Neurons Input Output Data
RRNN 5 x, y tr 387
Circular disk 30 x, y ∆t x, y 500
Machine screw 65 x, y, φ, ∆t x, y, φ 500

Noisy or undesirable data sets, termed outliers, can not only
slow the convergence of a network, but can also result in the
network most closely approximating this noisy data as
opposed to that which is desired [8]. For these reasons,
target trajectory data which contrasted highly with that of the
norm was filtered out prior to training.

Network parameters are originally set at random values. The
learning rate η was allowed to adapt during the training
procedure based on the change of sum squared error over one
complete run through the data sets (one epoch). That is,

η
η ε
η εk

k

k

if E
if E+ =

+ ≤
− >





1
0
0

∆
∆

 (10)

where ε is a small positive increment and ∆E is the difference
between the current and previous cost function E defined in
Equation (A.1).
As oulined in the Appendix, the back-propagation training
algorithm performs the weight adjustments by moving along

 4

the cost function in the opposite direction of the gradient to a
“local” minimum in the network’s parameter space. In an
attempt to locate the global error minimum, the adjustment of
the network’s parameters was performed iteratively using
numerous random sets of initial conditions.

4.2 Experimental Results Of Network Training
Three separate network training were performed; namely,
robot response time modeling, trajectory of a circular disk-
like object; and trajectory of a machine screw.

Robot Response
Figures 4(a) and 4(b) show the actual and RRNN trained
response time data of the robot to reach a fine grid of
positional points on the vibratory surface form its viewing
position (700mm above the surface). The robot response
time corresponds to the time increment between the
command issued to the robot controller and the
acknowledgment received from the robot controller. The
maximum percent error in the robot response time model
across the entire trained region is 11.1%.

0
2 0 0

4 0 0
6 0 0

8 0 0
0

5 0

1 0 0
1 .2

1 .3

1 .4

1 .5

1 .6

1 .7

x - a x is (m m)y - a x is (m m)

tim
e

(s
)

(a) Robot Response Time to pick up object at (x,y)

0
2 0 0

4 0 0
6 0 0

8 0 0
0

5 0

1 0 0
1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

x - a x is (m m)y - a x is (m m)

tim
e

(s
)

(b) RRNN approximation of Robot Response Time

Fig. 4 Experimental and Simulated Robot Response Time

As shown in Fig. 4, the robot response time is a linear
function of x and y:

x v t xx= + 0 (11a)
y v t yy= + 0 (11b)

where vx = 1.555 m/s; vy = 0.325 m/s; x0 = -1.435 m; and y0 =
-0.429 m. The nominal robot velocity was 0.635m/s.
It was observed that the wrist typically reaches its desired
orientation by the time the robot moves the wrist into the
desired position. Thus, the same network parameters were

used for the picking up the two different objects since the
limiting factor contributing to the robot’s response time has
been the Cartesian translation undergone by the robot.

Trajectory of Circular Disk
The TTNN approximated trajectories are shown in Figure 5.
Each vector in this plot represents a 0.2 second trajectory
followed by the target. It is interesting to note that the neural
network actually learned to model somewhat of a stationary
point where these disk-like parts were observed to frequently
slow down, and sometimes get temporarily ‘stuck’ on the
feeder.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

x-axis (mm)
y-

ax
is

 (m
m

)

Fig. 5 TTNN approximated trajectories (Circular disk)

Figure 6 compares the TTNN approximated trajectories
against the real data not included in the training set over a
broad range of initial starting conditions. As shown in the
Figure 6, the network model fairly accurately predicts these
complex paths for short time intervals.

Actual Trajectory
Neural Network

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

x-axis (mm)

y-
ax

is
 (m

m
)

Fig. 6 Comparison between predicted and actual trajectories

Table 2 shows the TTNN’s success rate of predicting the
final state of 100 moving parts after various time intervals. A
successful estimation was taken to be one in which the final
position difference in modeled and actual trajectories was
less than ±8 mm in both x and y directions. As shown in
Table 2, it is desirable in implementation to minimize ∆t, the

 5

time interval between sensing and pickup since the error
propagates as the time interval increases.

 6

Table 2 Success rate of TTNN’s on trajectory prediction
Time Interval (s) Success Rate

0.3 90.2 %
0.6 86.1 %
0.9 79.8 %
1.2 75.4 %
1.5 68.1 %

Trajectory of Machine Screw
Figure 7 show approximated trajectories of the moving screw
for three initial orientation angles; 90°, 0°, 45°and -45°. In
each plot, the increments are of constant time intervals of 0.3
seconds each showing the evolution of three state variables
over time. It is interesting to note the inter-relation between
initial orientation angle and final trajectory of the part. There
is also a noticable tendency for the screw’s orientation to
move towards 0 deg as time evolves, due to the screw’s head
dragging behind the rest of the screw.

-50 0 50
-60

-40

-20

0

20

40

x-axis (mm)

y-
ax

is
 (m

m
)

(a)

-50 0 50
-60

-40

-20

0

20

40

x-axis (mm)

y-
ax

is
 (m

m
)

(b)

-50 0 50
-60

-40

-20

0

20

40

x-axis (mm)

y-
ax

is
 (m

m
)

(c)

-50 0 50
-60

-40

-20

0

20

40

x-axis (mm)

y-
ax

is
 (m

m
)

(d)

Fig. 7 TTNN approximated trajectories (Machine screw)

4.3 Experimental Results Of Dynamic Part Pickup
In an attempt to improve the success rate for picking up the
circular disks, the target position over elapsed time and the
robot response time to reach each position are graphed in
Figure 8 and the time distribution among the activities in
each control loop cycle is summarized in Table 3. As shown
in Figure 8, a representative target of interest to be picked up
is located at initial location (-60, -40) in mm. The rendezvous
point for the target is calculated to occur at the location (-
18.7, -30.3) after 1.23 seconds. Convergence was typically
achieved after 6 iterations through the DPPC.

Table 4 summarizes the success rate of the dynamic part
pickup strategy in real-time using three different viewing
configurations. The first and second configurations differ in
initial viewing heights; namely, at the vertical distance of
700mm and 500mm respectively. A third control strategy
was implemented in which two network approximations are
made in succession. The viewing height begins at 700mm,
moves to 500mm while estimating part trajectory, and finally
grasps from 500mm. The results summarized in Table 3 are

based on 100 pickup attempts, indicating viewing
configuration used, the corresponding FOV, average time
interval for pick up, and success rate associated with each
method. As shown in Figure 8 and Table 3, since a dominant
time-delay of 1.2 seconds is needed for the robot to execute a
single part, the time interval between sensing and pickup, ∆t,
becomes relatively insensitive to change in viewing height.

Table 3 Control loop cycle-time distribution

Process Time (ms) Time (s)
Integration 60 tv=0.227
Image Processing 38
Serial Communication 74
486 Processing 55
Robot Response 1200 tr=1.2
Total Average Cycle Time 1427 ∆t=1.427

-100
-50

0
50 -40 -35 -30 -25 -20 -15

0

0.5

1

1.5

2

2.5

3

x-axis y-axis

tim
e

(s
)

Fig. 8 Part trajectory and Robot Response Time

Table 4 Success rate for three different viewing methods

Viewing method FOV(mm) Average δt Success
700mm (135x135) 1.43s 61%
500mm (96x96) 1.36s 68%

Successive 1352 ⇒ 962 2.72s 66%

As an additional measure of performance, the average cycle
time to pick up a single part was compared with one using a
part-specific fixture. In the case of part specific setup, the
system must only verify the part’s presence visually, and then
pick it up at a known position (chosen to be 500mm away).
This average cycle time was approximately 4.52s. The
DPPC’s pickup strategy had an cycle time of 4.88s based on
a viewing method of 500mm, about 7.4% longer per cycle
than the approach with a part-specific fixture.

6. CONCLUSIONS
A technique to pickup objects moving in pseudo-random
motion on vibratory feeder has been presented. Specifically,
a dynamic part pickup controlled system has been developed
and implemented on an industrial robot. The system uses a
position-based vision system to determine the initial state of

o-part
x-robot

 7

the object and a recursive learning algorithm to predict the
pickup state. The latter utilizes two neural networks to model
the trajectories associated with individual parts on the feeder
and the robot response time at a specific velocity. The
performance of this hand/eye coordination control strategy
has been evaluated experimentally on picking up objects
moving on an industrial vibratory feeder in real-time. As
demonstrated experimentally, the vision-guided dynamic
part-pickup system can provide an effective means to predict
the future state of the moving object when the view of this
object becomes temporarily blocked or obscured by the
actuating mechanism itself.

REFERENCES
1. Lee, K.-M. and Qian, Y., “Intelligent Vision-Based Part

Feeding on Dynamic Pursuit of Moving Objects,” SPIE
Photonics East, 23-26 October 1995, Philadelphia, PA, pp
172-183.

2. Sharma, R. and Aloimonos, J., "Target Pursuit or Prey
Catching Using Qualitative Visual Data," Pro. of AAAI-90
Workshop on Qualitative Vision, pp. 195-198, July 1990.

3. Issacs, R., “Differential Games,“ John Wiley & Sons, Inc.,
New York, 1965.

4. Kuc R. and Barshan, B., "Bat-like Sonar for Guiding
Mobile Robots," IEEE Control Systems Mag., pp. 4-12,
August 1992.

5. Lee, K.-M. and Blenis, R.,"Design Concept and Prototype
Development of a Flexible Integrated Vision System," J. of
Robotic Systems, Vol. 11, No. 5, pp. 387-398, 1994

6.Tsai, R. Y., ″A Versatile Camera Calibration Technique for
High Accuracy 3D Machine Vision Metrology using Off-
the-shelf TV Camera and Lenses,″ IEEE Trans. on
Robotics and Automation, Vol. RA-3, No. 4, pp. 323-344,
August, 1987.

7. Tsai, R.Y., and Lenz, R. K., "A New Technique for Fully
Autonomous and Efficient 3D Robotics Hand/Eye
Calibration," IEEE Trans. on Robotics and Automation,
Vol. 5, No. 3, June 1989, pp. 345-358.

8. Dumuth, H. and Beale, M., Neural Network Toolbox for
Use with MATLAB, The Math Works, Inc., 1993.

ACKNOWLEDGMENTS
This research was partially supported by the National Science
Foundation EEC-9420492 and by the Woodruff Faculty
Fellow.

APPENDIX
Let the cost function of a typical neural network (as shown in
Figure A.1) be

E b zkj j
j

n
= −

=
∑1

2
2

1
() (A.1)

where bkj, is the jth element of the kth output data set Bk{bk1,
bk2, …, bkn} corresponding to the input data set Ak{ak1, ak2, …,
ak(n+1)} in training data pairs; and zj is the jth output given by

z wj ij i
i

n
=

=
∑ σ

1

 (A.2)

σkp

ak1

ak2

θ
V W

Σ
ak n+1

z1

zn

Σ
σk3

σk2

σk1

Figure A.1. Target Trajectory Neural Network

The hidden processing elements where σk{σk1, σk2, …, σkp} is
computed from Equation (A.3):

σ θi kh
h

n

h i if a v= +
=
∑()

1
 (A.3)

where the hidden-layer processing element function is

f
e

()γ γ=
+ −

1
1

 . (A.4)

The cost function is minimized in the opposite direction of
the gradient:

w w
E

wij
new

ij
current

ij
= −η

∂
∂1 (A.5a)

v v
E
vij

new
ij
current

ij
= −η

∂
∂2 (A.5b)

θ θ η
∂
∂θi

new
i
current

i

E
= − 3 . (A.5c)

where ηi (i=1,2,3) are positive-valued constants (learning rate)
that regulate the amount of adjustments made with each
gradient move,

∂
∂

∂
∂

∂
∂

σ
E

w
E
z

z
w

e
ij i

i

ij
k j= = − (A.6a)

∂
∂

∂
∂

∂
∂σ

∂σ
∂

∂σ
∂

E
v

E
z

z
v

e w
vij i

i

i

i

ij
k ki

i

ijk

n
= = −

=
∑

1
 (A.6b)

∂
∂θ

∂
∂

∂
∂σ

∂σ
∂θ

∂σ
∂θ

E E
z

z
e w

i i

i

i

i

i
k ki

i

ik

n
= = −

=
∑

1
 (A.6c)

where e b zk kj j= − .

