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A New Technique for Fully Autonomous and 
Efficient 3D Robotics Hand/Eye Calibration 

ROGER Y. TSAI AND REIMAR K. LENZ 

Abstract-This paper describes a new technique for computing 3D 
position and orientation of a camera relative to the last joint of a robot 
manipulator in an eye-on-hand configuration. This is part of a trio for 
real-time 3D robotics eye, eye-to-hand, and hand calibrations, which use 
a common setup and calibration object, common coordinate systems, 
matrices, vectors, symbols, and operations throughout the trio, and is 
especially suited to machine vision community. It is easier and faster 
than any of the existing techniques, and is ten times more accurate in 
rotation than any existing technique using standard resolution cameras, 
and equal to the state-of-the-art vision based technique in terms of linear 
accuracy. The robot makes a series of automatically planned movements 
with a camera rigidly mounted at the gripper. At the end of each move, 
it takes a total of 90 ms to grab an image, extract image feature coordi- 
nates, and perform camera extrinsic calibration. After the robot finishes 
all the movements, it takes only a few milliseconds to do the calibration. 
A series of generic geometric properties or lemmas are presented, leading 
to the derivation of the final algorithms, which are aimed at simplicity, 
efficiency, and accuracy while giving ample geometric and algebraic in- 
sights. Besides describing the new technique, critical factors influencing 
the accuracy are analyzed, and procedures for improving accuracy are 
introduced. Test results of both simulation and real experiments on an 
IBM Cartesian robot are reported and analyzed. 

I. INTRODUCTION 

A .  The Calibration Trio 

N ORDER for a robot to use a video camera to estimate the I 3D position and orientation of a part or object relative to 
its own base within the work volume, it is necessary to know 
the relative position and orientation between the hand and the 
robot base, between the camera and the hand, and between 
the object and the camera. These three tasks require the cali- 
bration of robot, robot eye-to-hand, and camera (see Fig. 1). 
These three tasks normally require large-scale nonlinear opti- 
mization, special setup, and expert skills. We have developed 
three techniques to deal with these three tasks. They are as 
follows: 

1) Camera Calibration (see [6], [ 101, [ 1 11, [ 131). 
2) Robot Eye-to-Hand Calibration (this paper). 
3) Cartesian Robot Hand Calibration [ 5 ] .  
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CAUB ATlON ‘1 CALIBRATIO 

Fig. 1. To obtain the 3D position and orientation of an object relative to 
the robot world base, it is necessary to perform three calibrations; namely, 
robot hand, eye-to-hand, and eye (camera) calibration. 

The advantages of the techniques are as follows: 
1) They are faster than any other vision-based calibration 

technique by at least an order of magnitude. 
The camera calibration takes only 25 ms on a 68000-based 

minicomputer plus 65 ms to read the image into the com- 
puter and extract the image feature coordinates (centers of 36 
circular discs) with better than 1-pm accuracy in the image 
space. For the other two calibrations, the robot makes a series 
of moves, and at the end of each move, a camera calibration 
is performed. At the end of all the moves, a few milliseconds 
are needed to finalize the calibration trio. 

2) The techniques are at least as accurate as any existing 
technique using vision. 

3) The three calibrations share the following: setup, cali- 
bration plate, image feature extraction procedure, definition 
of symbols and matrix representations, robot motion, and pro- 
cessing equipment. 

4) The calibration need not be 3D. It can be coplanar. This 
makes the construction of high-accuracy target points possible 
(see the next section for the description of targets). 

5) They are friendly to machine vision people and do not 
require special skills. 

This paper describes the second calibration procedure. 

B. 3 0  Robotics Hand/Eye Calibration 
3D robotics hand/eye calibration is the task of computing 

the relative 3D position and orientation between the camera 
and the robot gripper in an eye-on-hand configuration, mean- 
ing that the camera is rigidly connected to the robot gripper. 
The camera is either grasped by the gripper, or just fastened 
to it. More specifically, this is the task of computing the rel- 

* When doing feature extraction, off-the-shelf general-purpose image pro- 
cessing hardware boards were used for frame grabbing, thresholding, and 
boundary location estimation. 
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ative rotation and translation (homogeneous transformation) 
between two coordinate frames, one centered at the camera 
lens center, and the other at the robot gripper. The gripper 
coordinate frame is centered on the last link of the robot 
manipulator, and as we shall see in this paper, the robot ma- 
nipulator must possess enough degrees of freedom so as to 
be able to rotate the camera around two different axes while 
at the same time keeping the camera focused on a station- 
ary calibration object in order to resolve uniquely the full 3D 
geometric relationship between the camera and the gripper .2  

C. The Difficulties of the Problem 
It is obvious that if the robot knows the exact 3D posi- 

tions of a number of points on a calibration setup in the robot 
world coordinate system as well as the 3D location of the 
gripper, while at the same time, the camera can view these 
points in a proper way, then it is possible to determine the 
3D homogeneous transformation between the camera and the 
calibration world coordinate frame, making it a trivial mat- 
ter to compute the homogeneous transformation between the 
camera and the manipulator. However, it is very difficult, if 
at all possible, for the robot to acquire accurate knowledge of 
the 3D positions of a number of feature points easy enough 
for the camera to view simultaneously with the right resolu- 
tion, field of view, etc., while the position information has 
to be known in the robot world coordinate system. Some re- 
searchers treat the difference between the calibration world 
coordinate system and the robot world coordinate system as 
a 6-degree-of-freedom unknown, and incorporate them into 
a much larger nonlinear optimization process (see “The Rea- 
sons why the State-of-the-Art Is Deficient” later in the paper). 
We propose a much easier and faster approach. 

D. The Importance of 3 0  Hand/Eye Calibration 
The calibration is important in several aspects: 
Automated 3D Robotics Vision Measurement: When vi- 

sion is used to measure 3D geometric relationships between 
different parts of an object in a robotics work cell, it is often 
necessary to use the manipulator to move the vision sensor to 
different positions in the work space in order to see different 
features of the object (see [15]). At each point, the 3D position 
and orientation of the feature measured by the vision system 
is only relative to the vision sensor. As the manipulator moves 
the sensor to different positions, the measurements taken at 
different positions are not related to one another unless we 
know the 3D relative position and orientation of the sensor at 
different locations. If the robot system is capable of knowing 
where the gripper is in the robot world coordinate system to 
some degree of accuracy, then it should know how much 3D 
motion it has undertaken from one position to another. Since 
the camera is rigidly connected to the gripper, of course it 
also undergoes the same rigid body motion, but only in the 
robot world coordinate system. If the hand/eye calibration is 
not done, one does not know the 3D homogenous transforma- 
tion between the camera 3D coordinate systems at different 
locations simply from the motion of the robot manipulator. 

*It takes at least two rotary joints and one linear joint, or three rotary 
joints. It is possible to use just two rotary joints, but the rotation axes for 
these two joints must coincide at the calibration block. 

Automated Sensor Placement Planning: In order to do 
automated 3D measurement with robot vision, sensor plan- 
ning is vital in order to automatically determine the optimum 
positions of the sensor so that all the desired features can be 
viewed while taking care of problems of occlusion, depth of 
focus, resolution, field of view, etc. However, even if the 
robot knows where to put the sensor for optimum viewing, 
it does not know where the manipulator should be in order 
to achieve this goal, unless the 3D geometric relationships 
between the last link of the manipulator and the sensor are 
known. 

Automated Part Acquisition or Assembly: When vision 
is used to aid the robot in grasping an object for automated 
assembly or part transport with eye-on-hand configuration, 
unless iterative visual feedback is used, the vision system may 
be able to determine where the part is relative to the sensor, 
but the robot does not know how to place the manipulator to 
grasp it. This problem can be resolved by performing robot 
handleye calibration. 

Stereo Vision: If only one camera is used to do stereo vi- 
sion, one way to create a stereo base is to move the camera 
with the manip~lator.~ Although the robot system may know 
how much the manipulator has moved, it does not know the 
homogeneous transformation between the 3D camera coor- 
dinate system, even if the camera undergoes the same rigid 
body motion as the gripper does (since the rigid body motion 
is defined only in the robot world coordinate system). Again, 
when the hand/eye calibration is performed, this problem is 
solved. 

E. The Reasons why the State-of-the-Art is Deficient 
From our literature survey, there are two categories of ap- 

proaches for doing robot hand/eye calibration: 
Coupling Hand/Eye Calibration with Conventional 

Robot Kinematic Model Calibration: References (partial 
list): [l], [3], [7]. In this approach, global nonlinear opti- 
mization is done over the robot kinematic model parameters 
an the hand/eye parameters simultaneously, making the num- 
ber of unknowns generally over 30. Such large-scale nonlinear 
optimization is very time-consuming, and needs a very good 
initial guess and accurate data for convergence. It also cannot 
easily exploit the use of redundant images and stations for re- 
ducing error since the computation would become prohibitive. 

Decoupling Hand/Eye Calibration from Conventional 
Robot Kinematic Model Calibration: References (partial 
list): [9], [12], this paper. As far as we know, Shiu and Ah- 
mad’s work [9] and the work reported in Tsai and Lenz [12] 
as well as this paper are the first attempts to decouple the 
hand/eye calibration from robot model calibration and not use 
global high-dimensional nonlinear optimization. The starting 
point in these two works are similar (although independently 
developed), the solutions are very different. In Shiu and Ah- 
mad’s method, the number of unknowns to solve for is twice 
the number of degrees of freedom, since they treat sin and cos 
functions as independent. We found it advantageous to use 

This is not highly recommendable except in low accuracy applications. 
It is better for the robot to carry a stereo pair of cameras or a laser-camera 
pair, or to use one camera with model-based location determination. 
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WORLD 

Fig. 2. Basic setup for robot hand/eye calibration. Ci and Gi are coordinate 
frames for the camera and gripper, respectively. 

Fig. 4. The physical setup. A CCD camera is rigidly mounted on the last 
joint of an IBM Clean Room Robot for performing hand/eye calibration. 

Fig. 3. The physical setup. A CCD camera is rigidly mounted on the last 
joint of an IBM Clean Room Robot for performing hand/eye calibration. 

redundant frames to improve accuracy, but in our algorithm, 
the number of unknowns stays the same no matter how many 
frames are used simultaneously, and for each additional frame, 
only 60 additional arithmetic scalar operations are needed 
(each operation takes less than half a microsecond on a typical 
minicomputer). In Shiu and Ahmad’s method, the number 
of unknowns increases by two for each extra frame. Our pro- 
cedure is simpler and faster, and the derivation procedure is 
also simpler. We have also done extensive error analysis, sim- 
ulation and real experiments for testing the accuracy potential 
or problems of hand/eye calibration, and propose means for 
improving accuracy. 

11. THE NEW APPROACH 

A .  Basic Setup 
Fig. 2 is a schematic depiction of the basic setup. Figs. 3 

and 4 show two photos of the actual setup. The robot carrying 
a camera makes a series of motions with the camera acquiring 
a picture of a calibration object at the pause of each motion. 
The calibration object is a block with an array of target points 
on the top surface. The position of each calibration point is 
known very accurately relative to an arbitrarily selected coor- 
dinate system setup on the block (see [6], [lo], [ l l ] ,  [13]). A 
detailed description of the setup can be found in Section IV. 
The following is a list of definitions for the various coordi- 

nate frames. (Note: All coordinate frames mentioned here are 
Cartesian coordinate frames in 3D): 

The gripper coordinate system. That is, the coor- 
dinate frame fixed on the robot gripper and as the 
robot moves, it moves with the gripper. 
The camera coordinate system. That is, the coor- 
dinate frame fixed on the camera, with the z axis 
coinciding with the optical axis, and the x ,  y axes 
parallel to the image X ,  Y axes. 
The calibration block world coordinate frame. This 
is an arbitrarily selected coordinate frame set on 
the calibration block so that the coordinate of each 
target point on the calibration block is known a 
priori relative to C W .  
The robot world coordinate frame. It is fixed in 
the robot work station, and as the robot arm moves 
around, the encoder output of all the robot joints 
enables the system to tell where the gripper is rel- 
ative to R W .  

Gi: 

Ci: 

C W :  

R W :  

Definition of a List of Homogeneous Transformation 
Matrices: 

Hgi defines coordinate transformation from Gi to R W (1)  

Hci defines coordinate transformation from C W to C; (2) 

Hgij defines coordinate transformation from Gi to Gj (3) 

1 gfJ [o  0 0 1 
Rgij Tgij H .. E 
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Fig. 5. Relationship between the homogeneous matrices and the coordinate 
frames. 

Hcii defines coordinate transformation from C; to Cj (4) 

Hcg defines coordinate transformation from C; to G; (5) 

In the preceding equations, i ,  j range from 1 to N, where N 
is the number of stations in Fig. 2 where the camera grabs 
pictures of the calibration block. Fig. 5 illustrates the rela- 
tionship between the homogeneous matrices and the various 
coordinate frames in Fig. 2. Note that Hcg does not have any 
station index ( i  or j ) .  This is because the camera is rigidly 
mounted on the gripper of the robot arm and therefore, Hcg 
is the same for all stations. 

from Gj to R W ,  obviously 

Similarly 

Notice that (6) and (7) are incompatible in terms of where the 
inverse signs are placed. This is due to the fact that Hgi is 
from G; to R W while He; is from CW to C;. 

(6) H .. = H I ’ H .  
g U SJ g r ‘  

Hcjj = HCjHc;’. (7) 

Final: He, 
Notice that if R W coincided with C W, it would be trivial to 

compute Hcs , which in this case would be equal to Hgil He;‘ . 
However, it is very difficult for the coordinate system on the 
calibration block to be set in a fixed and precisely known 3D 
relationship with respect to the robot coordinate system such 
that the positions of all the points on the calibration block are 
known relative to the robot. 

a) Some basic background for  a general rotation ma- 
trix and its real eigenvectors: Before describing the new tech- 
nique, we introduce the representation for transformation (in 
particular, rotations) used below. It is well known [8]  that 
any rigid body motion or Cartesian coordinate transformation 
can be modeled as a rotation by an angle 0 around an axis 
through the origin with direction cosines n l ,  n2, n3 ,  followed 
by a translation T such that 

r x ’  i r x  i 

where (x  , y , z )  and (x’ , y ‘ , z’) are the coordinates of any point 
before and after the transformation. R is a 3 x 3 orthonormal 
matrix of the first kind (i.e., det (R) = 1 )  

ni + ( 1  - nil cos e 
nln2( l  - cos e) + n3 sin 0 

nln3(1 - cos e) + n2 sin 8 n2n3(1 - cos e) + nl  sin e 

nln2(1 - cos e) - n3 sin e nln3(1 - cos e) + n2 sin e 
n2n3(l -cos e)  - n l  sin 8 

ni + (1 - n:)cos e) 
n; + (1 - n;) cos 8 

B. What Are the Observables and What is to be 
Computed? 

I )  The Observables or the Measurables: The observables 
are He, and Hgr for i = 1, . . . , N.  He, is obtained from 
computing the extrinsic calibration parameters (see Tsai 1986, 
[ lo ] ,  [ l l ] ,  [ 1 3 ] )  using the image grabbed at the ith pause 
of robot movement. It defines the relative 3D rotation and 
translation from C W to C, .  For 36 calibration points, it takes 
about 20 ms to compute, and is accurate to one part in 4000. 
The other set of observables is the Hgl’s. Any robot that can 
supply the information of where the gripper is within the robot 
workstation is capable of delivering Hgl .  This requires good 
robot calibration. Actually, even if Hgr may be bad, so long 
as HgIJ is good, there is no problem. This is due to the fact 
that the computational procedure entails only Hgr,, but not 
Hgr f 

2) Elements to be Computed: 

Since Hgr defines transformation from G ,  to R W, and Hg, 
Intermediate: HglJ,  He, 

H is the homogeneous transformation matrix (used in ( 1 ) -  
(5) ) ,  and is defined as 

R 

“ = [ o  0 0 3- 
One of the eigenvector and eigenvalue of R must be the ro- 
tation axis and 1, respectively, since by definition, R is a 
rotation around axis P ,  = [n l  n2 n3IT, and obviously 

RP, = P, 

thus Pr is an eigenvector (or principal vector) and its cor- 
responding eigenvalue is 1. From (8) and by definition, it 
is obvious that specifying P ,  and e completely specifies R .  
Therefore, it is quite convenient to represent R by P ,  scaled 
some function of 8. We use a modified version of Rodrigues 
formula (see [4]), and define P ,  as 

Pr = 2 sin - [nl n2 n31T, 
e o I e I T .  (9) 2 
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Besides the advantages associated with quaternions or other 
vector representation of rotation matrix, one advantage for us 
is that some error formulas hold true even for noninfinitesimal 
perturbations. For example, Lemma V in Section III-A is ex- 
act. Also, the error formula in (29) is simpler. Another ob- 
vious advantage is that R is a simple function of P ,  without 
any trigonometric functions 

1 
2 

R = (1 - q ) Z  + - (P,P,T + CY * Skew(P,)) (IO) 

where a = d m  and Skew (Pr) is defined in (1 le). For 
the rest of the paper, the principal axis is defined as such, and 
all the computational procedures are given for P,  explicitly, 
and not for R .  

b) Computational procedures and conditions for 
uniqueness: We first give the computational procedures and 
conditions of uniqueness before we derive them. The deriva- 
tions and proofs follow from the eleven properties or lemmas 
in Section 11-D. The actual proof for those eleven lemmas will 
be published in a later paper that will contain a fuller account 
of the work. The minimum number of stations is three, where 
station means the location where the robot pauses for doing 
camera extrinsic calibration. Using more than three stations 
improves the accuracy, as will be seen in Section 111-A. 

Some Definition of Notation: 

0 R  : 
P,iJ : 

Angle of rotation for R .  
Principal axis or rotation axis for R,, defined 
in (3), which is the 3D rotation from gripper 
coordinate frame Gi to G j ,  as defined in (3). 

(1 la) 
P,, Rotation axis for R,, in (4). (1 1b) 
p e g  : Rotation axis for R ,  . (1 IC) 

- -q A /  

(1 Id) 

Skew (V): A skew-symmetric matrix generated by a 3D 
vector V such that 

0 -Vz Vy 

Skew (V) = 

N.  Number of stations described in Section 11-A. 

Notice that the vectors defined above will also be used as a 
3 x 1 column matrix. Also note that since Pg,, P,,, and P,, 
are rotation axes with a function of angle as their length, they 
completely specify Rgij, Re,, and R,. That is why for the 
procedures in the following, the formula for Peg is given, and 
not for R ,  . 

3) Procedure for Computing Reg: 
Step 1: Compute P:g:  For each pair of stations i ,  j such 

Z L 

X A y  cw 

Fig. 6. Pairs of stations should be selected such that the interstation angle 
is as large as possible, and the angle between different interstation rotation 
axes are as large as possible. The bar between stations denotes a particular 
selection of a pair of stations. 

that the rotation angle R,, or R,, is as large as possible (Fig. 
6 illustrates a good way to select the pairing. See also section 
on test results), set up a system of linear equations with pAg 
as the unknown 

(12) 

Since Skew (PglJ + PclJ) is always singular, it takes at least 
two pairs of stations to solve for a unique solution for p f g  
using linear least squares technique. 

Exception handling: If P,, + P,, 1J is colinear with 
Pg,2, 2 + P,,2J2 while Pg,  lJ 1 is not colinear with Pgr2/2, then 
the rotation angle of R ,  must be 180" and the rotation axis 
the same as Pgl 

skew <'gIJ + pCIJ)p fg  = pCIJ - p g l J .  

+ P,, lJ . 
Step 2: Compute ORgc: 

ORge = 2 tan-' lP:gl. (13) 

Note: Step 2 is not quite necessary since P ,  in Step 3 is 
sufficient to represent rotation. However, (13) may be handy. 

Step 3: Compute P,: 

4) Procedure for  Computing Tcg: Given at least two pairs 
of stations i ,  j, set up a linear systems of three linear equations 
with Tcg as unknowns 

(15) 
For at least two pairs of stations, two sets of (15) are estab- 
lished and can be solved for the common unknowns Tcg using 
linear least squares solutions. 

C. Speed Performance 
After the robot finishes the movement and grabbing the im- 

ages, it takes only about 100 + 60N arithmetic operations to 
complete the computation. For a typical minicomputer, this 
only takes about 1/2 ms for ten stations. This complexity fig- 
ure (100 + 60N) can be derived as follows: The aajority 

(Rgg - Z)Tcg = Rc,T,-Q - Tg,. 
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of the computation is for solving the overdetermined linear 
least squares solutions of (12) and (15). It takes about 3 X 
N x 32 to form the normal equation of either one of (1 le) and 
(16), and 33 x 2 to solve the 3 x 3 normal equation. With a 
minimum of three stations and two interstation pairs, it takes 
about 1/10 ms. This is negligible compared with the robot 
movement and image acquisition and analysis; at the pause of 
each movement, it takes about 90 ms to grab an image, extract 
all the 36 feature point coordinates with high accuracy, and 
compute the extrinsic camera parameters defined in (4). 

D. Derivations of Computational Procedures and 
Conditions of Uniqueness using Eleven Lemmas 

In order to outline the derivations of the computational pro- 
cedures without going into actual details, eleven lemmas will 
first be stated and the significance of each explained. Selected 
sets of the key lemmas will be proved. Then the proof for the 
computational procedure for R ,  and Tcg will be given, fol- 
lowed by the conditions for uniqueness which will be stated 
and proved. 

Lemma Z: Rgij and R c ~  differ by a unitary similarity trans- 
formation 

(16) 
Proof: This follows easily from the fact that Hcg , Hg;; , 

H&', Hcjj in Fig. 5 form a closed loop and thus their product 
equals identity. 

Significance: As a result, the eigenvector matrix of Rgii 
can be transformed from that of R,, using R,. 

Lemma ZI: R ,  rotates the rotation axis of R,Q into that of 

(17) 

R .. = R R . . R T  g U cg CIJ cg. 

Rgij, or 
P g IJ ' .  = RcgPc;j. 

Proof: This follows from expanding R,ij and Rgij in 
(16) by their associated eigenvector and eigenvalue matrices, 
and making use of the fact that PgU and P,Q are the only 
real eigenvectors of Rg0 and R,,, respectively, and that the 
resultant rotation matrices on the left- and right-hand sides of 
(16) have a common real eigenvector. 

Significance: Since, from Section 11-B1, Pcij and Pgij 
can be readily available from the observables H,ij and Hgij, 
(17) establishes constraints on Reg in order to solve for it. 
Lemma II also says that if we regard all P,o and Pgij as two 
clusters of vectors or points, then R ,  transforms one cluster 
into another. 

Lemma IZZ: The rotation axis of R ,  is perpendicular to 
the vector joining the ends of the rotation axes for R,ij and 

(18) 
Proof: This can be seen by observing Fig. 7, but alge- 

braically, here is the proof (we will omit the subscript ij for 
clarity): The purpose is to show that (Pg - Pc)TPc = 0 .  By 
making use of (17) and the fact that RcgPcg = Peg,  we have 

(Pg - P,)TPcg = (Pg - Pc) RcgRcgPcg 

Rgij, or 
Pcg 1 (Pgij - Pcij). 

T T  

= (RcgRg - p g > T p c g  

= [(Rcg - I)PgITP, 

= P,'(R,T, -Z)Pcg = 0 .  

Fig. 7 .  Geometrical relationships between P,, P,, and P g .  Peg rotates Pc 
into Pg . The plane containing the circle is perpendicular to P, , and point 
B is the midpoint of point C and G .  

Significance: This implies that for a given pair of distinct 
PgU and PgO, Peg is confined to be in the bisecting plane of 
Pcij and PgU.  With two such pairs, the direction of P ,  can be 
determined. In fact, (18) implies that Pcg can be determined 
up to a scale factor s from 

However, we will not use Lemma I11 in this manner. Instead, 
Lemma I11 is used to build up the procedure for computing 
Reg via Lemmas IV, V, and VI. The reason is that (19) is 
more error-sensitive and has unnecessary degeneracies due to 
the fact that angle is not considered jointly. 

Lemma IV: Pgii - Pcij is colinear with (Pgij + Pcij)  x Peg.  
Proof: This follows from the fact that Pg;, - P,u is si- 

multaneously orthogonal to Pcg (according to Lemma HI) and 
to Pgv + Pcii (this latter property can be easily proved). 

Significance: This says that Pgc - P,u = s(Pgc + P,Q) x 
Peg for some scale factor s. Lemma V forces s to be 1. This 
lemma makes use of Lemma LII, but the formula it generates 
is more accurate and robust than (1 8) (coming out of Lemma 
III) so far as computing P ,  is concerned, as will be seen. 

Lemma V: Pgij - P,, and (PgU + PcU) x P i g  have the 
same length, where P i g  was defined in (l ld).  

Proof: Again, in the following proof and in Fig. 7, we 
will drop the subscript i j  for P g ~  and Pcij. Let the angle 
between the vectors represented by P i g  and Pg + P,  be a. 
Then by definition 

J(Pg + P,)  x P i g \  = 1pg + P , J / P ; ~ J  sin a. 

Pcg = NPgi, j ,  - Pci, j , )  x (Pgi, j ,  - Pciz j 2 ) .  (19) 

Substituting (9) and (1 Id) into the above gives 
6 
2 

l(Pg + P,) x P &  = lpg + ~ , 1 2  sin - 
-1/2 

* (4 - 4 sin2 ;) sin a 

6 
2 

= IPg + P,I tan - sin a 

= 210B1 sin atan - 

= 2 1 2 B  tan - = 21cBI 

= JCGJ = JP,  - PCJ. 

6 
2 

6 
2 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 16, 2008 at 10:06 from IEEE Xplore.  Restrictions apply.



TSAI AND LENZ: FULLY AUTONOMOUS AND EFFICIENT 3D ROBOTICS HANDEYE CALIBRATION 35 1 

In the above derivations, A ,  B, C ,  G ,  0 are points in Fig. 
7, and /OB/ means length of the vector extending from point 
0 to point B, etc. Also, in the above derivations, several 
geometric and trigonometric relationships in Fig. 7 are used. 
One is lPg + P,I = 210BI. Another is sin a. 

Still another is 1-1 = tan 0/2. These properties follow 
easily from Fig. 7. Thus we have shown that 

= 

I(P, + Pc) x pig1 = lPg -Pel. 
Significance: Given Lemmas IV and V, Lemma VI is 

readily derived, which easily leads to the computational pro- 
cedure for p,, in (12). 

Lemma VI: 

(PgQ + PcQ) x P &  = P,, - PgQ. 

Proof: This is a direct consequence of Lemmas IV 
and V. 

Significance: Although (18) provides a constraint on the 
direction of P ,  for any pair of stations ij, (20) provides a 
stronger constraint since it constrains 6Rcg as well as Pcg.  

Lemma VZZ: Skew ( P g ~  + P,u) is singular and has 
rank 2. 

Significance: Skew (Pgu + P,u) is the coefficient matrix 
for the systems of linear equations in (12) used to solve for 
PA,. Therefore, Lemma VI1 implies that it is impossible to 
compute R ,  with only two stations. 

Lemma VZZZ: 

(Rgij - Z)Tcg = Rcg Tcjj - Tg;j. (21) 
Proof: This follows from the same derivation as 

Significance: Lemma VIII establishes the equation in 
Lemma I. 

(1 5 )  used to solve for T,, . 
Lemma ZX: R,Q - Z is singular and has rank 2. 

Significance: R,Q - Z is the coefficient matrix for the 
systems of linear equations in (15) used to solve for Tcg.  
Therefore, Lemma IX implies that it is impossible to compute 
Tcg with only two stations. 

Lemma X: If OR,  # s, or equivalently, IP,,l # +- 2, then 

has full column rank if and only if Pgi, j l  and Pgi2j2 have dif- 
ferent directions (or equivalently, PCi, j l  and PCj2j2 have dif- 
ferent directions). 

Significance: Expression (22) is just the compound ma- 
trix of two Skew ( P g ~  + p , ~ )  in Lemma VII, and therefore 
is the coefficient matrix for solving R ,  given two pairs of 
PgQ and PCi,. Thus Lemma X ensures that given a minimum 
of three stations, the solution for R ,  is unique. 

Lemma XI: 

has full column rank if and only if Pg; , j l  and Pgj2j2 have dif- 
ferent directions (or equivalently, P,;, j ,  and PCi2jz have dif- 
ferent directions). 

Significance: Expression (23) is just the compound ma- 
trix of two R,;j - Z in Lemma IX, and therefore is the co- 
efficient matrix for solving Tcg given two pairs of Psi  and 
PCjj .  Thus Lemma XI ensures that given a minimum of three 
stations, the solution for Tcg is unique. 

Proof of the Computational Procedure for  R,, in (12)- 
(14): Equation (12) follows from Lemma VI by considering 
the fact that for any two 3 x 1 vectors a and b 

a x b = Skew(a) b (24) 

where a and b on the left denotes vectors while a and b on 
the right are 3 x 1 column matrices. Equations (13) and (14) 
simply follow from the definitions of P i ,  in (l ld).  

Proof of the Computational Procedure for  Tcg in (15): 
This follows simply from Lemma VIII. 

Minimum Number of Stations: Three. This follows from 
Lemmas VII, IX, X, and XI. Equivalently, the minimum num- 
ber of pairs of stations needed is two. 

Conditions of Uniqueness: For a minimum of three sta- 
tions (or two pairs of stations), the necessary and sufficient 
condition for a unique solution for R,, and T,, is that the 
interstation rotation axes are not colinear for different pairs 
of stations. 

Proof: This follows from Lemmas X and XI. Note that 
when the sum of rotation axes (Pgu + PCu) are colinear while 
P g ~  is different for different interstation rotations, then the 
solution is still unique except that (12) cannot be used. In this 
case, angle (R,,) is simply 180" and the rotation axis is the 
same as Pcu + P,Q. 

111. ACCURACY ISSUES 

In the following, error analysis will first be given. Then, 
as a result of error analysis, critical factors dominating the 
error, and steps for improving accuracy will be described. 

A. Error Analysis 
The purposes of error analysis are as follows: 
1)  It reveals what the critical factors influencing the accu- 

2) It gives rise to various means for improving accuracy. 
3) It is essential for accuracy prediction, which is important 

to model-driven 3D vision planning. 
4) It helps to determine whether one has properly imple- 

mented the algorithm. If the error is much larger than what 
the error formula predicts, something in the setup, programs, 
or system are not in the right order. 

In this section, we first give a list of definitions, followed 
by a list of lemmas used for deriving the final error formula 
for R,, and Tcg. Then the error formula for R,, ,  T,,, and 
R,,, Tgjj due to error of R,;, TCi and Rgi,  T,; will be given, 
followed by the error formula of R ,  and Tcg . Critical factors 
affecting the accuracy will be discussed in the next section, 
and test results will follow thereafter. 
Definitions: 

RMS: 

u(V) :  

racy are. 

Root mean square (or average of the sum of 
squares). 
RMS of the magnitude of error corrupting a 3D 
vector V .  a( V )  and uv are equivalent. 
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a(R): 

Err ( V ) :  

Err (R):  

RMS of the magnitude of error of PR (rotation 
axis scaled by the rotation angle, see (6), (1la)- 
(Ilc)). a(R) and UR are equivalent. 
Maximum magnitude of error corrupting a 3D 
vector V. 
Maximum magnitude of error for PR. 

List of Lemmas Leading to the Final Error Formula 
Lemma I: 

PAR.R = P A R  + PR 
where A R is a small perturbation rotation matrix. 

rotation, the rotation axes are additive. 
Note: Lemma I says that for small error perturbation of 

Lemma 11: 

4 R 1 R 2 )  = w. 
Lemma 111: 

Err ( R I R 2 )  = Err ( R I )  + Err (R2) .  

Lemma IV: 

where V ]  are a number of 3D vectors with RMSE av,. 
Lemma V: 

a(R ' v )  =./: (0~1 VI)' + U,? 

where R is a rotation matrix with RMSE OR and V is a 3D 
vector with RMSE av. 

Lemma VI: 

Err (E Vi )  = E Err (Vi). 
I 

Lemma VII: 

Err (RI / )  = Err (R)IV/  + Err ( V ) .  

The proof for the above Lemmas will be published in a later 
paper. The following formulas can be easily derived from the 
above lemmas and the relationships between R, ,  and Rei,  R ,  
and between T,, and Rei, Tc; using (12). 

Error of Rev due to Error of Rei and R,j 

' R , ,  = dui,, (254 

Err (Rely) = Err (Rei) + Err (Rcj). ( 2 3 9  
Similar formulas hold for R,  . 

Error of TCb due to Error of Rci and Tci 

Equation (26b) is a simpler version of (26a) with u R ~ ,  and uR, 
replaced by u R ~ ,  etc. 

Err (T,ij) = [Err (Rei) + Err (Rcj)]lTcil 

+Err (Tci) + Err (Tcj). (26c) 

Error of Tgii due to Error of R,i and Tgi 

=./i ui,lTgl - Tg212 + 20;~ (27b) 

Err (Tgu) = Err (Rg2)JTgl - Tg21 +Err  (Tg1) +Err  (Tg2). 

(27c) 

Error of R ,  
Three-Station Case: 

where / ( P g I 2 ,  Pg23)  means the angle between Pg12 and Pg23 

eRgI2/2 = 21Pg121 = angle (Rg12)/2.  

Note that 

arrangement in Section IV), (28a) reduces to 

= OR,,] for all i j .  
Since it is always easy to have f?Rglz close to ORgz3 (see the 

ri 
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where Xi’s are the singular values of a matrix with the rows 
being the interstation rotation eigenvectors (using definition 
in (9)) for the camera. A few facts are worth noting (details 
and proofs to be published). First is that as the interstation 
rotation angle increases, Xi increases linearly, making uRCg 
inversely proportional to the interstation rotation angle. The 
second and most important fact is that as the number of inter- 
station rotations N increases hi increases by the square root 
of N, making uR, inversely proportional to a. Similarly 

Err (Reg) = (Err ( R g d  + Err (Red 

Error of Tcg 
Three-Station Case: 

where 

and is the coefficient matrix for solving Tcg in (15); and cond 
(A) is the condition number of A and is defined as 

cond (A) = 11 A 11 - /I A-’  11 . 
To simplify the formula, we can regard as being close 
in magnitude, and IT,i - Tgil as being close in magnitude, 
making (31) somewhat simpler: 

Similarly 

The effect of the number of stations on the error is the same 
as that for R,,. This is verified by the test results in Section 
IV . 
B. Critical Factors Affecting the Accuracy and Steps in 
Improving Accuracy 

By observing the accuracy formulas for R, and Tcg in 
Section III-A, the following observations can be made: 

Observation 1: The RMS error of rotation from gripper 
to camera uR, is inversely proportional to the sine of the 
angle between the interstation rotation axes. 

By observing (28a), it is seen that uRCg is inversely propor- 
tional to sin (L(Pg12,  Pg23)) (which is equal to sin (L(Pc12, 
Pc23))). This is reasonable since, from Lemma I1 in Section 
LI-D, R, rotates P,,, into PE,,. With a minimum of two pairs 
of ij ’s, (17) is used to solve for R,. When /(Pg12, Pg23) be- 
comes smaller, Pg12 becomes closer to Pg23, making (17) for 
each ij more similar to each other, thus causing the equation 
to be closer to singularity. Alternatively, one can see that the 
coefficient matrix for solving P &  (see L.emma VII in Section 
II-D) becomes singular as P,,, approaches Pg,, J Z  and P,,, ,, 
approaches P,,, /,. In fact, it can be shown that the row vectors 
of the coefficient matrix in Lemma X lie in two planes, with 
Pg,, + P,,, and Pgr2 J z  + P,,, J 2  being the normal vectors of 
the two planes. Thus the greater the difference between P,,, J ,  

and P,,, J z ,  the closer the two planes are to being orthogonal, 
making the coefficient matrix more linearly independent. 

Observation 2: The rotation and translation error are 
both inversely proportional to the interstation rotation an- 
gle. That is 

uR, OC -1 eRg,J and UTcg OC - 1 e R , ,  . 
This can be seen from (28c), (28d), and (31). This is reason- 
able since R, is determined solely from PclJ and PgU,  and 
the greater and 8Rgr1 are, the smaller the effect of a small 
perturbation (with given size U R ~ , , ,  uRglZ)  is on the result. 

Observation 3: The distance between the camera lens 
center and the calibration block has a dominant effect on 
the translation error. 
This comes from (31)-(33). In fact, any of the terms in (31) 
or (32) involving 1 T,,I or 1 Tgl - Tg21 generates much more 
error than all other terms in most of the practical setup. For 
example, if ITC1I is 5 in and the error of interstation rota- 
tions is 3 mrad (these are practical figures that one would 
encounter), then any term in (31) or (32) involving u ~ ~ I T ~ ~ ~  
would generate 15-mil error, which is much bigger than those 
other terms involving UT,, which is the error of translation as 
a result of extrinsic camera calibration. The term involving 
 UT^, however, has the potential of being very big, since this 
depends on the positional accuracy of the robot, which can 
be bad. 
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Observation 4: The distance between the robot gripper 
coordinate centers at different stations is also a critical 
factor in forming the error of translation. But the distances 
between different camera stations are not important. 

This again comes from (31)-(33). The situation is similar to 
that described in Observation 3. Notice that lTgl - Tg21 is 
not the distance between gripper tips at different stations. It 
is the amount of movement of the robot gripper coordinate 
center. 

Observation 5: The error of rotation is linearly propor- 
tional to the error of orientation of each station relative to 
the base. The error of translation is approximately linearly 
proportional to this error of orientation unless the error 
of robot translational positioning accuracy is big. 

This comes from (28c), (28d), and (31)-(33). 
It is convenient to define two types of critical factors. One 

is first-degree, and the other second-degree. The first-degree 
factor is more dominant in most cases, but sometimes, some 
second-degree factor  UT^^) can be so bad that it becomes dom- 
inant. 

First-Degree Critical Factors: 

1) The angle between different interstation rotation axes 
(e.g., ~ ( P ~ 1 2 ,  p g 2 3 ) ) .  Note: W g 1 2 ,  p g 2 3 )  = L(Pc12, 

2 )  The rotation angle of interstation rotation = 6 R c , l ) .  
3) The distance between the camera lens center and the cal- 

ibration block 1 Tcil, and the distance between the robot- 
arm coordinate centers at different stations I Tgl - Tg2 1 .  

4) The error of rotation of each station relative to base UR,, , 
uR,, , or error of interstation rotation UR, ,~ ,  UR~, ,  . 

pc23 ). 

Second-Degree Critical Factor: 

1) Error of translation of each station relative to base  UT^, , 
UTg,.  

C. Steps to Improve Accuracy 
1) Adopt the setup to be described in Section IV in or- 

der to achieve maximum angles between different interstation 
rotation axes, no matter how many stations are used. 

2) Maximize the rotation angle for interstation rotations. 
This again can be done using the setup mentioned earlier. 

3) Minimize the distance between the camera lens center 
and the calibration block. This requires a small calibration 
block and suitable optics for short-range viewing. 

4) Minimize the distance between the robot arm coordinate 
centers at different stations. This requires some planning and 
is robot-dependent. 

5 )  Use redundant stations. The setup described in Section 
IV is ideal for using as many stations as you wish. Since 
the extrinsic calibration plus feature extraction can be done 
within 90 ms when 36 points are used, using more frames 
poses no problem. The error due to nonsystematic sources 
will be reduced by a factor of a where N is the number of 
stations. (See results in Section IV.) 

6) Use camera calibration algorithm setup that yields high 

accuracy to improve error on translation and rotation of each 
individual station. 

7) Try to precalibrate the robot itself so that the position 
and orientation of each station is known more accurately. If 
this is difficult, then at least try to make interstation transla- 
tion and rotation more accurate, if possible. That is, the robot 
system may not be able to tell the user the absolute location 
and orientation of its gripper coordinate frame, it may, how- 
ever, be able to better tell the amount of relative movement 
from station to station. 

IV. SIMULATION A N D  REAL EXPERIMENT RESULTS 
A. Simulation Experiments 

I )  The Station Generation Process: It is important to use 
a process for simulating the position and orientation of gripper 
and camera stations that is realistic and easy for controlling the 
critical parameters of Section lU-B in order to see their effect 
on the final accuracy. It should allow all critical parameters to 
be in optimum conditions simultaneously. It also serves as a 
means of planning robot motion in order to generate stations in 
the real experiments. Fig. 6 illustrates the results of using our 
process for generating a five-station configuration. The bright 
coordinate frames are the camera coordinate frames Ci while 
the darker frames are for the robot gripper coordinate frames 
Gi. The bars in Fig. 6 indicate the selections of interstation 
pairs. The station generation process is described as follows: 
first, set up a calibration block world coordinate frame C W 
and a robot world coordinate frame R W as in Fig. 6. Next, 
directly above C W ,  place a pair of coordinate frames CO and 
Go for camera and gripper that maintains a distance of I Tcl 
from C W (notice that I Tc I is one among the critical factors 
in Section 111-B) with the z axis of CO pointing right at C W .  
CO and Go are actually not used for computing the results 
R,  and T,,, but rather for generating other stations. Next, 
select a number N to be the total number of stations to be 
generated. Then, generate N stations for camera and gripper 
by rotating CO and Go around N axes uniformly distributed 
with 360/N degrees apart, centered at C W and parallel to the 
xy plane of C W .  The interstation pairs are chosen using a 
star-drawing technique (see Fig. 6). This gives a systematic 
way of generating an arbitrary number of stations while at the 
same time allowing one to easily vary the critical parameters 
for testing error sensitivity. 

2) The Control of Critical Parameters as Simulation In- 
put Parameters: All of the critical parameters (first and sec- 
ond degree) listed in Section 111-B can be simulated with easy 
control. The control of each critical parameter is listed in the 
following: 

Interstation rotation angle: This is controlled by vary- 
ing the rotation angle used in rotating CO and Go to each 
individual station. 

Angle between different interstation rotation axes: 
This is controlled actually by varying the number of stations 
generated. For each case, choose only the first three traversed 
by doing star drawing. Obviously, the larger the number of 
overall stations is, the narrower the angle between successive 
interstation rotation axes is. 

Distance between camera and calibration block: This 
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is controlled by varying the distance IT, I in the above gener- 
ation procedure for placing CO and Go. 

Number of stations: This is the parameter in the pro- 
cess that is totally arbitrary, except that if it is even, the star 
drawing is not as straightforward. We always use an odd num- 
ber of stations. 

Rotation and translation error for each station ( u R ~ , ,  
 UT^,, U R ~ , ,  and  UT^,): This is an extrinsic calibration error, 
and can be simulated by perturbing the ideal homogeneous 
transformation matrices for each station. From our simulation 
tests, they agree quite well with Section HI-B. 

Fixed setup parameters: In order to simulate the actual 
physical setup, all the setup parameters are selected to be 
almost the same as those used in the real experiments to be 
described, except that due to the x axis problem with our 
robot (to be described later), the station generation process 
used in the real experiment is modified. In the following, the 
setup parameters are set as follows: 

RMS rotation error as a function of inverse of interstation rotation 

ITcl = 6.65in ITcg[ = 9.5in 

N = 3  UTc, = 3 

UTg, = 5 mil U R ~ ,  = U R ~ ,  = 1.511~ad. 

In the following, we show the simulation results of four critical 
parameters on the error of rotation R ,  and translation Tcg. 
These four critical parameters are tested separately. For the 
testing of each parameter, all the other setup and critical 
parameters are set as above, while the very parameter under 
test will be allowed to vary over a given range. loo0 tests are 
done for each case, and statistics are gathered. The results are 
shown in the following figures. 

3) Simulation Results: 
Effect of the size of interstation rotation angle on ac- 

curacy: Section 111-B described the relationships between the 
size of the interstation rotation angle and the R ,  as well as 
Tcg accuracy, and gave procedures for improving the accu- 
racy. Extensive simulation has been done and the results are 
consolidated into Figs. 8 and 9 (one for rotation error and the 
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RMS translation error as a function of inverse of interstation rotation Fig. 9. 
angle. 
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Fig. 10. RMS rotation error as a function of inverse of angle between two 
different interstation rotation axes. 

other translation). The curve is linear up to statistical sampling 
tolerance. It agrees quite well with Observation 2 in Section 
III-B, and it confirms the recommendation made in Section III- 
C. 

Effect of angle between interstation rotation axes on 
accuracy: The situation is similar to that above except that 
L(Pg12, PpgZ3) is allowed to vary while ORgl2 and ORgz3 are 
fixed. Fig. 10 shows the average error of rotation as a function 
of L(Pg12, Ppgz3). It is again linear, as predicted in Lemma I. 

Effect of camera-to-calibration-plate distance on ac- 
curacy: According to (31), the translation error has a dom- 
inant effect on unless UT,, or  UT^, are enormous. Fig. 
11 reflects this quite well. The RMS error of Tcg is plot- 
ted against this parameter. The curve is generally linear, but 
around the origin, it bends somewhat, due to the fact that 
when I TcI is small, its effect is no longer dominant and the 
effect of  UT^, shows up. 

Effect of number of interstation pairs on accuracy: Figs. 
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Fig. 11. RMS translation error as a function of the inverse of distance 
between camera and calibration plate. 
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Fig. 12. Translation error as a function of inverse of square root of the 
number of interstation pairs. The solid line is RMSE and dashed line is 
maximum error. 

12 and 13 show the error of translation and rotation as a func- 
tion of the inverse of square root of the number of interstation 
pairs. The solid line shows the RMS error, while the dashed 
line is the maximum error out of one thousand tests. As ex- 
pected, the RMS error increases linearly as the inverse of &. 
Since the proposed technique is quite efficient, and the station 
pose planning and robot motion are automatic, increasing the 
number of stations is quite feasible, and pays off well. 

B. Real Experiments 
I )  Setup Description: Fig. 3 shows the physical setup we 

used. A Javelin CCDE 480 x 388 camera is fastened to the last 
joint of an IBM Clean Room Robot (CRR). The CRR has two 
manipulators, each with seven degrees of freedom (including 
gripper opening). We only use one of the manipulators. The 
CRR is an electric box frame Cartesian robot. There are three 
linear joints (x ,  y, z)  and three rotary joints (roll, pitch, and 
yaw) for each manipulator. The work volume is about 6 ft 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
INMRSE OF SQUARE ROOT Of  NUMBER OF STATIONS 

Fig. 13. Rotation error as a function of inverse of square root of the number 
of interstation paris. The solid line is RMSE and dashed line is maximum 
error. 

by 4 ft  by 2 ft  and the repeatability for linear joint is about 
4 mil, and that for the rotary joints 1 mrad. The accuracy is 
calibrated to a limited extent. The scale and offset for each 
rotary joint are calibrated to 3-mrad accuracy. The rotation 
axes for the three rotary joints are supposed to be intersect- 
ing at the same point (origin of R W coordinate frame), but 
we did not calibrate that. The x axis has some problems: For 
our robot, the z beam sags, causing the movement in the x 
axis to be like that of a pendulum. This effect is not fully 
calibrated yet, but we suspect that it generates about 20-mil 
translation and 15-mrad rotation within a work range of 15 
in. Due to this problem, we are forced to modify the station 
generation procedure used in the simulation in order to avoid 
using the x axis. Either with or without moving the x axis, 
the station placement and manipulator motion planning is au- 
tomatic, and the number of stations can be arbitrary without 
manual intervention. 

The calibration block is a clear glass plate with the center 
1 in by 1 in area filled with 36 black discs printed on it 
using step-and-repeat photographic emulsion (see Fig. 14). 
The discs are 5000 pm apart with 2000-pm radius (accurate 
to 1 pm). The calibration is back-lighted and sits in the middle 
of the work space. 

2) Accuracy Assessment: The accuracy of our handleye 
calibration results is assessed by how accurately we can pre- 
dict the placement of a camera in 3D world with any arbitrary 
manipulator movement. As was indicated in Section I-D, one 
of the main reasons why robot handleye calibration is impor- 
tant is that the robot needs to know not only where the gripper 
is, but also where the camera is in the work space, so that the 
measurement taken by vision can be related to the robot. Be- 
ing able to determine where the camera is in the work space 
for an arbitrary manipulator movement is thus the primary 
goal. This is tested in the following steps: 

Step 1: Move the manipulator to 2N different positions 
where N is greater than 2. For each station i ,  compute the 
camera to calibration block homogeneous transformation f f c i  

using extrinsic calibration. This takes about 90 ms per station. 
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Fig. 1 Calibration block is a clear glass plate with 36 discs printe 
using photographic emulsion. The accuracy is 4 pm. 

m it 

The robot gripper position and orientation relative to robot 
world, which is Hgi, is also recorded. 

Step 2: Compute Hcg using procedures in Section II- 
B2b, using data from stations 1 through N .  

Step 3: For each station k (k from 1 to N )  compute 
the homogeneous matrix HRC (homogeneous transformation 
from robot world frame R W to calibration block world frame 
C W )  by 

~ : l ~ - l ~ - l  
HRC = C, cg g; . 

Make an average of HRC computed from these N stations. 
Step 4: Let stations N + 1 through 2N be called verifi- 

cation stations. For each of the verification stations, predict 
the position and orientation of the camera relative to the robot 
world base coordinate R W by HG‘ Hgi’ where k is the station 
index, and Hgk is computed from robot joint coordinates (see 
Section 11-B). Compare this predicted position and orientation 
with HckHRC, where Hck is computed in step 1 while HRC 
is computed in step 3.  

The results of a series of experiments yield the following 
table: 

New Camera Pose Prediction Error 
N Rotation Error (mrad) Translation Error (mil) 

4 
6 
8 
10 
12 

4.568 
3.304 
3.264 
2.888 
2.782 

23.238 
19.078 
26.712 
14.642 
12.516 

Since there is no absolute Hcg ground truth to compare 
with, the accuracy has to be assessed as the error of new 
camera pose prediction, as described earlier. The effect of 
N is indeed very significant. We have a program that auto- 
matically plans the movement of the manipulator for an arbi- 
trary number of stations, and since the algorithm proposed in 
this paper is quite efficient, increasing the number of frames is 
quite easy. Also observe that the error of the predicted cam- 
era pose includes both the error of the calibrated hand/eye 
relationship and the robot’s positioning error. Notice from 
the table that for 10 stations, the translation error is about 
14 mil. But the robot’s positioning accuracy is worse than 
10 mil. This means that the eye-to-hand relationship is cali- 
brated to better than 10 mil. Using the error formula in (32) 
scaled by J10/3, the error fo Tcg is predicted to be 10.66 

mil, agreeing well with the real experiment data. The rotation 
error is about 2.88 mad.  Notice that the error of rotary joint 
is about 2.5 mrad. Therefore, the actual error of Rcg should 
also be of this order of magnitude. This agrees very well with 
the prediction by (28), which gives 2.557 mrad. Notice that 
the error in the table is not strictly monotonic with respect 
to the inverse of the square root of number of stations. This 
is due to the fact that the simulation curves presented ear- 
lier were averaged over lo00 tests, while here, for each N ,  
there is only one test. Also, since the robot error itself gets 
into it, it is more unpredictable, while the simulation curves 
only show the Hcg error. Nevertheless, the error generally 
decreases nicely as the number of stations increases. 

V. CONCLUSION 

This paper introduced a high-speed, high-accuracy, versa- 
tile, simple, and fully autonomous technique for 3D robotics 
hand/eye calibration. It is high speed since it takes only about 
100 + 64N arithmetic operations to compute the hand/eye re- 
lationship after the robot finishes the movement, and incurs 
only additional 64 arithmetic operations for each additional 
station. This makes the current algorithm the fastest compared 
with the state of the art. The speed performance is especially 
attractive to those applications where the hand/eye configura- 
tion needs to be changed frequently. For example, the robot 
may pick up the camera to perform some task, and then put it 
right back to a holder. Since the grasping cannot be precise, 
hand/eye calibration must be performed frequently. It is also 
important to those tasks where hand/eye relationships need be 
changed frequently due to different task requirements. As for 
the accuracy, no other reported hand/eye calibration technique 
does any better. The results in our real experiments could be 
further improved if we changed the optics and the size of cal- 
ibration block, as well as the mounting position, so that all of 
the critical factors described in the accuracy analysis section 
would be taken into consideration. 
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